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V. Rostand∗,† and D. Y. Le Roux
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SUMMARY

An analysis of the discrete shallow-water equations using the Raviart–Thomas and Brezzi–Douglas–Marini
finite elements is presented. For inertia–gravity waves, the discrete formulations are obtained and the
dispersion relations are computed in order to quantify the dispersive nature of the schemes on two meshes
made up of equilateral and biased triangles. A linear algebra approach is also used to ascertain the possible
presence of spurious modes arising from the discretization. The geostrophic balance is examined and the
smallest representable vortices are characterized on both structured and unstructured meshes. Numerical
solutions of two test problems to simulate gravity and Rossby modes are in good agreement with the
analytical results. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The finite-element (FE) method is attractive for problems of environmental engineering due to
the flexibility of triangulation for the representation of irregular boundaries and for local mesh
refinement [1–7]. The method is widely applied to shallow-water (SW) simulation for a variety of
environmental problems including groundwater, coastal regions, atmospheric flows, and oceanic
flows [1, 3, 8–10]. The SW equations describe the behavior of a shallow homogeneous incompress-
ible and inviscid fluid layer. They are derived from the Navier–Stokes equations under Boussinesq
and hydrostatic pressure assumptions.
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One of the key issues that arises with mixed formulations is the possible presence of spurious
modes, i.e. small-scale artifacts, introduced by the spatial discretization scheme. This difficulty
with mixed methods is encountered in both SW and Navier–Stokes formulations. The appearance
of spurious solutions is mainly due to an inappropriate choice of approximation function spaces
for the FE method. The spurious modes usually take the form of pressure or surface elevation,
velocity, and/or Coriolis modes. They do not propagate but are trapped within the model grid. The
spurious solutions usually cause aliasing and an accumulation of energy in the smallest-resolvable
scale, leading to noisy solutions. Improvements have been achieved through the use of a variety of
mixed-order FE interpolation schemes [3, 5, 9, 11–13], a wave equation formulation [7, 14], and
stabilization methods [15].

Dispersion analysis of the discretized form of the linear SW equations is a useful tool to define
the relationships between frequency and wave number. It also permits to explicitly ascertain the
presence and determine the form of spurious solutions as well as the dispersive/dissipative nature
of a FE formulation [16–20]. However, such an approach is restricted to uniform meshes and
periodic solutions. In order to study the existence and the behavior of stationary spurious modes
associated with zero frequency on both uniform and unstructured meshes, a linear algebra approach
may be employed [21, 22]. It consists in determining the properties of the kernel of the associated
discretized problem. The kernel characterization may also be used to determine the form of the
smallest representative velocity vortex structures that can be represented in a given discretization.

The dispersion analyses and linear algebra approach performed in [18, 19, 22] suggest that three
FE schemes, the PNC

1 –P1 and P0–P1 pairs and the low-order Raviart–Thomas element RT0, can
be identified as promising schemes in terms of dispersion properties for the discretization of the
SW equations. The aim of this paper is to conduct such analyses for higher-order Raviart–Thomas
and Brezzi–Douglas–Marini (BDM1) FE approximation spaces. The BDM1 element has been
introduced in [23] for solving elliptic problems and to our knowledge it is analyzed here for the
first time in the context of inviscid SW flows. Two formulations are considered: the BDM1–P0
and the BDM1–P1 pairs.

The paper is organized as follows. We first present the governing equations and the spatial
discretization in Sections 2 and 3, respectively. A dispersion analysis is performed in Section 4 for
the inertia–gravity waves. In Section 5, a linear algebra approach based on the kernel properties
of the discretized problem is used for Rossby waves. The analytical computations are followed by
numerical simulations. Some concluding remarks complete the study.

2. GOVERNING EQUATIONS

Let � be a 2D domain with boundary �. The inviscid linear equations are expressed in Cartesian
coordinates [24] as

�u
�t

+ f k×u+g∇�=0 (1)

��

�t
+H∇ ·u=0 (2)

where u=(u,v) is the velocity field, � is the surface elevation with respect to the reference level
z=0, k is the unit vector pointing in the vertical direction, g denotes the gravitational acceleration,
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RT AND BDM FINITE-ELEMENT APPROXIMATIONS OF THE SW EQUATIONS 953

and the mean depth H and the Coriolis parameter f are assumed constant, unless otherwise stated.
The velocity is subject to the no-normal flow boundary condition u·n=0 on �, where n is the
outward pointing vector at the boundary.

For the analyses performed in this paper, time is assumed continuous and we seek periodical
solutions of (1)–(2) of the form

u(x, y, t)=u(x, y)exp(i�t), �(x, y, t)=�(x, y)exp(i�t) (3)

where � is the angular frequency.
By substituting (3) in (1) and (2) we obtain

i�u+ f k×u+g∇�=0 (4)

i��+H∇ ·u=0 (5)

Equations (4) and (5) are now discretized in space.

3. SPATIAL DISCRETIZATION

3.1. The weak formulation

We assume that u and � belong to the spaces V and W , with V and W in the square-integrable
space L2(�). The weak formulation is obtained by multiplying (4) and (5) by test functions u and
� belonging to V and W , respectively, and by integrating over the whole domain:∫

�
i�u·udx+

∫
�
f (k×u) ·udx+

∫
�
g∇� ·udx=0 ∀u∈V (6)

∫
�
i���dx+

∫
�
H∇ ·u�dx=0 ∀�∈W (7)

where dx is the area element with x=(x, y). The terms containing gradient and divergence operators
in (6) and (7) may be integrated by parts using Green’s theorem depending on the regularity of
spaces V and W .

3.2. Galerkin FE discretization

The Galerkin method approximates the solution of (6) and (7) in finite-dimensional subspaces.
Consider a representative meshlength parameter h that measures resolution and a FE triangulation
Th of the polygonal domain �.

The discrete solutions uh and �h sought belong to finite-dimensional spaces Vh and Wh , respec-
tively, with dim(Vh)= p and dim(Wh)=q . The spaces Vh and Wh are defined as a set of piecewise
polynomial functions over the triangulation Th . The degree and continuity order of these poly-
nomial functions are specified in the sequel for the FE schemes investigated in this paper.

The components of uh and �h are represented over a triangle K by interpolating functions
�(x, y) and �(x, y), belonging to Vh and Wh , respectively. We thus have

uh =
p∑

j=1
u j� j , �h =

q∑
k=1

�k�k (8)
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Note that for the RT0 and BDM1 elements, the normal velocities are expressed in terms of the
vector interpolating function u(x, y).

Let M and N be the velocity and elevation mass matrices, respectively, C the Coriolis matrix,
and G and D the gradient and divergence matrices, which are obtained from the elementary
matrices

M j1, j2 = i�
∫

�
u j1 ·u j2, Nk1,k2 = i�

∫
�

�k1�k2, C j1, j2 =
∫

�
f (k×u j1) ·u j2

Dk1, j1 =
∫

�
H(∇ ·u j1)�k1, G j1,k1 =

∫
�
g∇�k1 ·u j1

(9)

where j1, j2={1, . . . , p} and k1,k2={1, . . . ,q}. By using (8) and (9), Equations (6) and (7) are
rewritten in matrix form as (

M+C G

D N

)(
u

�

)
=0 (10)

where u=(u1, . . . ,u p)
t and �=(�1, . . . ,�q)

t.

3.3. The BDM1 element

The BDM1 element has been introduced by Brezzi et al. [23] in 1986 to solve elliptic problems.
It can be seen as an enriched version of the lowest-order Raviart–Thomas element denoted by
RT0. The RT0 element is based on flux conservation on element edges and it has continuous
normal components at triangle midedge points. For the BDM1 element, the normal component is
continuous through triangle edges, as for the RT0 element, but the corresponding basis functions
are linear instead of being constant. Consequently, the BDM1 element has two degrees of freedom
over each triangle side instead of one for the RT0 element.

Consider a triangle K of Th and let xi =(xi , yi ), i=1,2,3, be the coordinates of the three
vertices of K . At each side of K the tangential and normal vectors are defined as

t1 := x3−x2, n1 :=−k×t1

t2 := x1−x3, n2 :=−k×t2

t3 := x2−x1, n3 :=−k×t3

(11)

Let �i , i=1,2,3, be the barycentric functions of K and define for each permutation (i jk) of (123)
the basis functions u associated with the BDM1 element

u(i jk) :=
� j tk
tk ·ni = � j tk

2Area(K )
(−1)sgn(i jk) (12)

where Area(K ) denotes the area of triangle K . By using (12), one can verify that the normal
component u(i jk) ·n is linear on edge i and zero on edges j and k. Further, on edge i the normal
component takes the value 1 at vertex j and 0 at vertex k. In order to simplify the notation, the
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Figure 1. Elementary basis functions for the BDM1 space.

functions u are numbered from 1 to 6

u1 :=u(123), u2 :=u(132), u3 :=u(231)

u4 :=u(213), u5 :=u(312), u6 :=u(321)

(13)

in terms of permutations, as shown in Figure 1. Note that on each triangle edge of K the sum
of the two basis functions u exactly corresponds to the basis function associated with the RT0
element on that edge.

3.4. FE pairs

As previously mentioned, one of the issues associated with mixed methods is the possibility of
spurious modes and anomalous dispersion in the representation of waves. The choice of FE pairs to
approximate the velocity field u and the surface elevation � is thus delicate. In [18, 19, 22] three FE
pairs, namely the PNC

1 –P1 and P0–P1 pairs and the low-order Raviart–Thomas element RT0, have
been identified as promising schemes in terms of dispersion properties for the discretization of the
SW equations. Common to the first two FE velocity/surface-elevation pairs is a piecewise-linear
continuous representation of surface elevation, and they differ from one another in their representa-
tion of velocity. The PNC

1 –P1 pair [3, 17] has velocity nodes at triangle edge midpoints, and linear
basis functions are used to approximate the two velocity components on the element’s two-triangle
support. Since this particular representation of velocity is continuous only across triangle bound-
aries at midpoint nodes and discontinuous everywhere else around a triangle boundary, this element
is termed nonconforming (NC) in the FE literature. The P0–P1 pair has a piecewise-constant
representation of velocity. In [18, 19, 22] the RT0 element has a discontinuous piecewise-constant
representation of surface elevation and such a FE pair is thus named RT0–P0 in the sequel.

The purpose of this paper is to study the dispersive properties and eventually detect the presence
of spurious modes of three other FE pairs. Those are the RT0–P1, BDM1–P0, and BDM1–P1
pairs. The RT0–P1 pair has RT0 basis functions for velocity and a piecewise-linear continuous
representation of surface elevation. Common to the last two pairs is a BDM1 representation of
velocity and the corresponding basis functions for elevation are piecewise constant and piecewise
linear, respectively.
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4. INERTIA–GRAVITY WAVES

4.1. Analytical frequencies

In the continuum case the free modes of (4) and (5) are examined by perturbing about the basic
state u=v=�=0. We seek periodic solutions of the form

(u(x, y),�(x, y))=(ũ, �̃)exp(i(kx+ly)) (14)

where k and l are the wave numbers in the x- and y-directions, respectively. Substitution into (4)
and (5) leads to a square matrix system for the amplitudes ũ and �̃. For a nontrivial solution to
exist, the 3×3 determinant of the matrix must equal zero, and this constraint leads to the following
dispersion relation for the frequency:

�(�2− f 2−gH
√
k2+l2)=0 (15)

The first solution �=0 is the geostrophic mode and would correspond to the slow Rossby mode
on a �-plane, while the other two solutions

�AN=±
√

f 2+gH(k2+l2) (16)

correspond to the free-surface gravitational modes with rotational correction. Since � is purely
real, all modes are neutrally stable and neither amplify nor decay.

4.2. Discrete frequencies

The dispersion analysis is performed on two types of regular meshes: Meshes 1 and 2. Mesh 1
corresponds to equilateral triangles and Mesh 2 is made up of biased right isosceles triangles as
shown in Figure 10. The mesh spacing, denoted by h, is defined as the triangle side length for
Mesh 1 and the shortest triangle side length for Mesh 2.

Nodal unknowns are located on typical nodal sets, e.g. faces, vertices, and barycenters. In
this analysis only selected discrete equations are retained and they correspond to each type of
nodes. For example, three discrete momentum equations are considered for the RT0–P0 pair on
the three possible types of faces, and two discrete continuity equations are considered at the two
possible types of barycenters, e.g. upward and downward pointing triangles as shown in Figure 3
for Mesh 1. Consequently, selected discrete amplitudes ũ j and �̃ j are considered for each nodal
set. Assembling the elementary matrices defined in (9) leads to the stencils of Figures 4–7 for
the PNC

1 –P1, RT0–P0, RT0–P1, BDM1–P0, and BDM1–P1 pairs. Substitution of (14) in these
reference stencils leads to the linear system(

M+C G

D N

)(
ũ

�̃

)
=0 (17)

where ũ and �̃ are the amplitude vectors. Matrices M,N ,C,D, and G are the contributions of
velocity mass, surface-elevation mass, Coriolis, divergence, and gradient stencils, respectively, for
the selected equations. As for the continuous case, the determinant of the matrix in the left-hand
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Figure 2. Elementary displacements are represented on the reference triangle on Meshes 1 and 2.

,

,

,

Figure 3. Discrete amplitude numbering for the PNC
1 , RT0, BDM1, and P0 elements.

side of (17) must vanish to admit nontrivial amplitude solutions, and this leads to the dispersion
relation. Note that we have

G=− g

H
Dt (18)

where Dt is the complex conjugate transpose of D. Consequently, only divergence stencils are
displayed in the following. To simplify the notation, we define the quantities J,K , and L as
elementary displacements as shown in Figure 2 on Meshes 1 and 2. Note that J,K , and L are
different on both meshes. Further, we let In be the n×n identity matrix and �=√

3/2.
We now examine the dispersion relations corresponding to the FE pairs considered in this study.

4.2.1. The PNC
1 –P1 pair. The discrete velocity amplitudes are considered on three typical faces

(see Figure 3) and ordered as

ũ=(ũ1, ũ2, ũ3, ṽ1, ṽ2, ṽ3)
t (19)

Because the PNC
1 basis functions are orthogonal in L2, the velocity mass and Coriolis matrices

are block diagonal. For Mesh 1, we obtain from (9)

M= i�
�h2

3
I6, C= f

�h2

3
N

(
0 −I3

I3 0

)
(20)
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Figure 4. PNC
1 –P1 divergence and P1 mass stencils.

For the surface elevation, only one discrete amplitude is required for �̃ at mesh vertices. The stencils
of the divergence operator in x− and y− directions are shown in Figure 4 and the corresponding
matrix is

D=H
h

6
(D1 D2 D3 D4 D5 D6) (21)

where

D1 = 2i�

(
sin

(
J−L

2

)
+sin

(−K

2

))
, D4= i

(
sin

(
J−L

2

)
+3sin

(
K

2

))

D2 = 2i�

(
sin

(
J−K

2

)
+sin

(−L

2

))
, D5= i

(
sin

(
J−K

2

)
+3sin

(
L

2

))

D3 = 4i�sin

(
J

2

)
, D6=2isin

(
K −L

2

)
(22)

The mass stencil for the P1 elevation is shown in Figure 4 and the corresponding matrix is

N = i�
�h2

12
(6+eiJ +eiL +eiK +e−iJ +e−iL +e−iK )

= i�
�h2

6
(3+cos(J )+cos(K )+cos(L)) (23)

Vanishing the 7×7 determinant leads to

�1,2=±�AN+O(h4), �3=0, �4,5,6,7=± f (double root)

The first two roots �1,2 correspond to inertia–gravity waves and they coincide with the analytical
solution (16) in the limit as mesh spacing h→0. The third root �3 corresponds to the geostrophic
mode and �4,5,6,7 represent spurious propagating inertial oscillations that have no particular spatial
characteristics [17, 18]. The dispersion relation on Mesh 2 is given in [17, 18], and the frequency
corresponding to inertia–gravity waves is found to be the same order O(h4).
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Figure 5. Stencils for the RT0–P0 and RT0–P1 pairs.

4.2.2. The RT0–P0 pair. The dispersion relation for the RT0–P0 pair on Mesh 2 is given in [18]
and the results on Mesh 1 are computed here. By using the notations of Figure 3 the following
discrete amplitudes are considered:

ũ=(ũ1, ũ2, ũ3)
t, �̃=(�̃A, �̃B)t (24)

where A and B represent typical barycenters of upward and downward pointing triangles. The
velocity mass, Coriolis, and divergence stencils are shown in Figure 5, and the corresponding
matrices are

M= i�
�

9

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 −cos

(
J

2

)
−cos

(
L

2

)

−cos

(
J

2

)
5 −cos

(
K

2

)

−cos

(
L

2

)
−cos

(
K

2

)
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(25)
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C= f
1

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −cos

(
J

2

)
cos

(
L

2

)

cos

(
J

2

)
0 −cos

(
K

2

)

−cos

(
L

2

)
cos

(
K

2

)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(26)

D=H

⎛
⎜⎜⎜⎜⎝

E

(
J−L

6

)
E

(
K − J

6

)
E

(
L−K

6

)

−E

(
L− J

6

)
−E

(
J−K

6

)
−E

(
K −L

6

)
⎞
⎟⎟⎟⎟⎠ (27)

N = i�
�h2

2
I2 (28)

where E(X)=exp(iX). For example, the mass stencil for the RT0 element is shown in Figure 5
and at node 1 (see Figure 3) we obtain

�

18
(10ũ1−(eiJ/2+e−iJ/2)ũ2−(eiL/2+e−iL/2)ũ3)

which corresponds to the first line of M in (25).
For the 5×5 determinant to vanish we obtain

�1,2=±�AN+O(h2), �3=0, �4,5=O(h−1)

for infinitesimal mesh spacing.

4.2.3. The RT0–P1 pair. Common to the RT0–P0 and RT0–P1 is an RT0 representation of the
velocity and they differ from one another in their representation of elevation. Consequently, the M
and C matrices are given by (25) and (26), respectively. As for the PNC

1 –P1 pair, only one discrete
amplitude is required for �̃ at mesh vertices and hence N is given by (23). The divergence stencil
on Mesh 1 is shown in Figure 5 and the D matrix is obtained as

D=H
2i

3

(
sin

(
J−L

2

)
sin

(
K − J

2

)
sin

(
L−K

2

))
(29)

Vanishing the 4×4 determinant leads to

�1,2=±�AN+O(h2), �3,4=0 (double root)

for infinitesimal mesh spacing. For Mesh 2, M and N are found in [18] and C and D are deduced
from (26) and (29) by using J =kh, K =−kh+lh, and L=−lh as in Figure 2. We obtain �3,4=0
and �1,2 again coincides with �AN for infinitesimal mesh spacing.
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4.2.4. The BDM1–P0 pair. By using the notations of Figure 3, the following discrete amplitudes
are considered:

ũ=(ũ1, . . . , ũ6)
t, �̃=(�A,�B)t (30)

After long and tedious algebra, we obtain from stencils of Figures 6 and 7 on Meshes 1 and 2

M= i�
�

36

⎛
⎜⎝

M1(K ) M2(J,K , L) M2(L ,K , J )

M2(J, L ,K ) M1(L) M2(K , L , J )

M2(L , J,K ) M2(K , J, L) M1(J )

⎞
⎟⎠ (31)

C= f
1

24

⎛
⎜⎝

0 −C1(K , L) C1(K , J )

C1(L ,K ) 0 −C1(L , J )

−C1(J,K ) C1(J, L) 0

⎞
⎟⎠ (32)

D=H 1
2 (D1(J,K , L) D1(K , L , J ) D1(L , J,K )) (33)

where

M1(J )=
(

8 2E(J )

2E(−J ) 8

)

M2(J,K , L)=
(−E(K )−E(−L) 2−2E(−J )

2−2E(J ) −E(−K )−E(L)

)

C1(K , L)=
(
E(K )+E(−L) 2

2 E(−K )+E(L)

)

D1(J,K , L)=

⎛
⎜⎜⎜⎝

−E

(
L−K

3

)
−E

(
K − J

3

)

E

(
J−K

3

)
E

(
K −L

3

)
⎞
⎟⎟⎟⎠

For example, the mass stencil for the BDM1 element is shown in Figure 6 and at node 1 (see
Figure 3) we obtain

�

36
(8ũ1+2eiK ũ2+(−eiK −e−iL)ũ3+(2−2e−iJ )ũ4+(−e−iJ −eiK )ũ5+(2−2e−iL)ũ6)

which corresponds to the first line of M in (31).
As for the RT0–P0, the matrix N is given by (28). On Mesh 2 we obtain

M= i�
1

24

⎛
⎜⎝

M3 M5(K , J ) M5(K , L)

M5(−K , J ) M4(L) M6(J,K , L)

M5(−K , L) M6(L ,K , J ) M4(J )

⎞
⎟⎠ (34)
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Figure 6. Stencils for the BDM1–P0 and BDM1–P1 pairs on Mesh 1.
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Figure 7. As for Figure 6 but on Mesh 2.
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where

M3= 4I2,

M4(L)=
(

6 2E(L)

2E(−L) 6

)
,

M5(K , J )=
( −E(K ) 2−E(−J )

2−E(J ) −E(−K )

)

M6(J,K , L)=
(−E(L)−E(−J ) −2E(−K )

−2E(K ) −E(−L)−E(J )

)

For Mesh 2, C and D are deduced from (32) and (33) by using the values of J,K , and L as in
Figure 2. For the 8×8 determinant to vanish we obtain

�1,2=±�AN+O(h2), �3,4,5,6=0 (quadruple root), �7,8=O(h−1)

for both meshes and infinitesimal mesh spacing.

4.2.5. The BDM1–P1 pair. Common to the BDM1–P0 and BDM1–P1 is a BDM1 representation
of the velocity and they differ from one another in their representation of elevation. Consequently,
the M and C matrices are given by (31), (34), and (32). As for the PNC

1 –P1 pair, only one discrete
amplitude is required for �̃ at mesh vertices and hence N is given by (23). The divergence stencils
on Meshes 1 and 2 are found in Figures 6 and 7 and the D matrix is expressed as

D= 1

6h
(D1(J, L) D1(K , J ) D1(L ,K )) (35)

where

D1(J, L)=(E(J )−E(L) E(−L)−E(−J ))

For both meshes, vanishing the 7×7 determinant leads to

�1,2=±�AN+O(h4), �3,4,5=0 (triple root), �6,7=O(h2)

We note that similar to the PNC
1 –P1 pair the discrete inertia–gravity wave frequencies are computed

very accurately (O(h4)) for infinitesimal mesh spacing.

4.3. Summary of discrete frequencies

The previous results are summarized in Table I, where n is the dimension of the linear system (17),
and hence the degree of the dispersion relation for the five FE pairs examined here. We mention
the multiplicity of the discrete frequency types and the order of accuracy for inertia–gravity waves.
For infinitesimal mesh spacing (h→0) we have �1,2→�AN for all schemes and hence discrete
inertia–gravity frequencies are consistent with the continuous case. The slow mode corresponding
to �=0 is present for all pairs. However, for the RT0–P1, BDM1–P0, and BDM1–P1 pairs,
the multiplicity of this mode is greater than 1. Further, a O(h2) mode exists for the BDM1–P1
pair. We also observe the presence of solutions of the form �=± f for the PNC

1 –P1 pair. These
modes usually arise when the discrete scheme involves more velocity nodes than surface-elevation
nodes [17, 18]. They are propagating spurious inertial oscillations that have no particular spatial
characteristics. Finally, the FE pairs having a discontinuous representation of surface elevation
have spurious frequencies of type O(h−1) as in [16, 18].
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Table I. Multiplicity of the discrete frequencies obtained from the dispersion
relations for the five FE pairs examined in Section 4.2.

FE pair n �=±�AN �=0 �=± f �=O(h−1) �=O(h2)

PNC
1 –P1 7 2 :O(h4) 1 4 0 0

RT0–P0 5 2 :O(h2) 1 0 2 0
RT0–P1 4 2 :O(h2) 2 0 0 0
BDM1–P0 8 2 :O(h2) 4 0 2 0
BDM1–P1 7 2 :O(h4) 3 0 0 2

4.4. Gravity wave limit of discrete frequencies

We now analyze the computed frequencies �CP≡�1,2 for the five FE pairs examined in Section 4.2.
Because the Coriolis factor does not have a significant impact on the propagation of gravity waves
we let f =0 to obtain the gravity wave limit. From (16) and the results of Section 4.2, we determine
the analytical and computed phase speeds, denoted by cAN and cCP, respectively,

cAN≡ �AN√
k2+l2

=±√gH , cCP≡ �CP√
k2+l2

The phase speed ratio, denoted by rPH, is then computed as the ratio of the computed phase speed
to the analytical one, with

rPH≡
∣∣∣∣ cCPcAN

∣∣∣∣=
∣∣∣∣�CP

�AN

∣∣∣∣= |�CP|√
gH(k2+l2)

(36)

Note that we should have rPH=1 in the absence of numerical dispersion. We show rPH as a surface
function depending on the normalized wave numbers kh and lh for Meshes 1 and 2 in Figure 8.
The values of kh and lh for Mesh 1 vary between ±4�/3 and ±�/�, respectively, in order to
include the six points defined later in (37). For Mesh 2, kh and lh vary between ±� as in [18, 25].
The phase advance (rPH) is also plotted in Figure 9 along the selected axes OE and OT for Mesh
1 and OX, OD1, and OD2 for Mesh 2. The directions of these axes are defined in Figure 8 and
Table II. For symmetrical reasons the phase advance surfaces are shown only for positive wave
numbers in Figure 9.

For the RT0–P0 pair we obtain rPH�1 on Mesh 1 for all values of kh and lh and the waves do
not accelerate on Mesh 1. On Mesh 2, we have rPH�1 in the OX and OD1 directions but this is
not the case in the OD2 direction since the maximum value observed for rPH is 1.18. The PNC

1 –P1
pair behaves similarly although a weak acceleration (rPH=1.02) is noticeable in the OT, OX, and
OD1 directions. For larger wave numbers the RT0–P0 and PNC

1 –P1 pairs present less dispersion
effects than the three other ones examined in Section 4.2 because rPH is closer to 1 for those
pairs.
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Figure 8. Definition of selected axes and the phase speed ratio (rPH) as a surface function on Meshes 1
and 2 for the RT0–P0, RT0–P1, PNC

1 –P1, BDM1–P0, and BDM1–P1 pairs.
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Figure 9. The phase speed ratio (rPH) along selected axes in function of the normalized wave number.

Table II. Normalized wave number relations for the
selected axes defined in Figure 8.

Mesh 1 Mesh 2

OE: lh=0 or kh=±(2�/3)lh OX: lh=0 or kh=0
OT: kh=0 or kh=±2�lh OD1: kh= lh

OD2: kh=−lh

For the RT0–P1 and BDM1–P1 pairs we have rPH�1 for all values of kh and lh on both meshes.
Furthermore, we have rPH=0 for

(kh, lh)=
(

±4�

3
,0

)
,

(
±2�

3
,±�

�

)
on Mesh 1 (37)

(kh, lh)=±
(
2�

3
,−2�

3

)
on Mesh 2 (38)

The wave numbers in (37) and (38) correspond to spurious surface-elevation modes introduced
by the spatial discretization scheme and they are represented in Figure 10. These modes do not
propagate but are trapped within the model grid which usually leads to noisy solutions. For the
BDM1–P0 we observed that rPH�1 on Mesh 1 for values of kh and lh inside the hexagonal area
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Figure 10. Zero frequency surface-elevation modes for the RT0–P1 and BDM1–P1
pairs: Mesh 1 (left) and Mesh 2 (right).

defined by the six points in (37). On Mesh 2 we have rPH�1 for all kh and lh values. Consequently,
the gravity waves always accelerate with such a discretization scheme.

4.5. Canal simulation

In this test, Equations (1) and (2) are solved using f =0. The purpose of the experiment is to
validate the analytical results obtained in Section 4.4 on Mesh 2 in the OX and OD2 directions.
For the OX direction, Mesh 2 is considered while in the OD2 direction we employ a mesh obtained
from Mesh 2 by a rotation of �/4 as in [18, Figure 5.1]. The domain extent is 2000km×280km.
The resolution is set to h=10km. The fluid is initially at rest and zero normal velocity is specified
at the boundaries, except at the western one. On the western side, the fluid velocity is set to
0.1ms−1 inbound and �=1m, with H =1000m and g=10ms−2, i.e. the phase speed of gravity
waves is

√
gH =100ms−1. The Crank–Nicolson scheme is used for time discretization. The time

step is set to 10 s and the gravitational Courant number is thus 0.1, such that the time step has no
significant impact on the wave dispersion. The duration of the simulation is 1000 time steps and
the wave front should be located at midbasin, i.e. at 1000 km from the western boundary, at the
end of the simulation.

In Figure 11 the numerical solutions obtained for all FE pairs are shown for both OX and
OD2 directions. The results for the PNC

1 –P1 and RT0–P0 pairs are identical to those displayed in
[18] and they are reproduced here for comparison purposes with the other pairs. The RT0–P1 pair
exhibits the strongest oscillations trailing behind the front in both directions, while the region ahead
of the front is free of oscillations. This result is in good agreement with the analysis conducted in
Section 4.4 where rPH�1. Small oscillations appearing at the beginning of the simulation travel
about two times as fast as the front and they are observed at the eastern part of the domain in
Figure 11. The presence of these oscillations is beyond the scope of our analysis. The results for
the BDM1–P1 and RT0–P1 pairs are similar but the amplitude of the oscillations behind the front
is slightly smaller for the BDM1–P1 pair. The results for the BDM1–P0 pair show oscillations
travelling faster than the wave front while the region behind the front is noise free. Again these
results are in good agreement with those of Section 4.4 because rPH�1 in the OX and OD2
directions for all kh and lh.

The experiment has also been performed on Mesh 1 in the OE and OT directions but the results
are not presented here as they are very similar to those obtained on Mesh 2.
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Figure 11. Surface elevation for the canal test after 10 000 s of simulation on Mesh 2.

5. GEOSTROPHIC BALANCE

5.1. Kernel analysis

In this analysis we seek stationary solutions to the SW systems (4) and (5) as done in [22] for the
P0–P1, PNC

1 –P1, P1–P1, MINI, P1 iso P2–P1, and P2–P1 pairs. Here, we examine the RT0–P1,
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Table III. Dimension of the discrete operator kernels and � on an n×n regular Mesh 2 with
no-normal flow boundary condition.

PNC
1 –P1 RT0–P0 RT0–P1 BDM1–P0 BDM1–P1

p 6n2 3(n− 1
3 )2− 1

3 3(n− 1
3 )2− 1

3 6(n− 1
3 )2− 2

3 6(n− 1
3 )2− 2

3

q (n+1)2 2n2 (n+1)2 2n2 (n+1)2

C 0 (n−1)2+1 (n−1)2+1 2(n−1)2+2 2(n−1)2+2

G 1 1 3 1 3

D 5(n− 1
5 )2− 1

5 (n−1)2 2(n−1)2 4(n− 1
2 )2 5(n− 3

5 )2+ 1
5

CD 0 0 (n−1)2 2(n−1)2+1 2(n−1)2+1

CG (n+1)2 2n2 2n2+2 4(n− 1
2 )2+2 3(n− 1

3 )2+ 11
3

CDG (n−1)2+1 (n−1)2+1 2(n−1)2+3 4(n− 1
2 )2+1 3(n− 1

3 )2+ 8
3

� (n−1)2 (n−1)2 (n−1)2 2n2−2 (n+1)2−4

BDM1–P0, and BDM1–P1 pairs. Stationary solutions are obtained by substituting �=0 in (9) and
(10) and this leads to

(
C G

D 0

)(
u

�

)
=0 (39)

The stationary solutions thus belong to the kernel of the matrix in the left-hand side of (39) denoted
by CDG. We also define

CD≡
(
C

D

)
, CG≡(C G) (40)

We consider a square domain with no-normal flow boundary condition and the regular n×n Mesh 2.
The dimension of the C,D,G,CD,CG, and CDG matrix kernels are computed numerically using
MATLAB for n=3, . . . ,14, and the results are extrapolated for any integer n and are given in Table
III. We observe that the C matrix has a nontrivial kernel for the RT0 and the BDM1 elements.
For the latter the kernel dimension is twice greater than the RT0 one. The rank deficiency for the
C matrix is a consequence of using only one velocity component at the velocity nodes as for the
Arakawa C-grid [26, 27]. For the PNC

1 –P1 pair, both velocity components are used at velocity
nodes and the C matrix is thus full rank.

We note that the dimension of the G matrix kernel is equal to 1 for the PNC
1 –P1, RT0–P0,

and BDM1–P0 pairs. This solution corresponds to the hydrostatic surface-elevation mode, i.e.
the solution with constant elevation and zero velocity. It can be simply considered as a constant
of integration associated with the solution of the governing equations. However, for the RT0–P1
and BDM1–P1 pairs the dimension of the G matrix kernel is equal to 3 and hence two spurious
surface-elevation modes are present.
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The dimension of the D matrix kernel can be deduced from (18) and by using the rank theorem
we obtain

dim(ker(D))= p−q+dim(ker(G)) (41)

The CD matrix kernel is the intersection of the C and D matrix kernels. For the PNC
1 –P1 and

RT0–P0 pairs this intersection is empty. The dimension of the CD matrix kernel is (n−1)2 for the
RT0–P1 pair while it is twice greater for the BDM1–P0 and BDM1–P1 pairs as shown in Table III.

The modes lying in the CD matrix kernel, named here as CD-modes, behave similar to the
spurious surface-elevation modes but they belong to the velocity space instead. The fact that the
number of CD-modes is O(n2) compared with O(1) for the spurious surface-elevation modes
suggests that the CD-modes may appear locally on the mesh which is usually not the case for the
elevation modes.

The C matrix is skew symmetric and by using (18) and the rank theorem we deduce

dim(ker(CG))=q+dim(ker(CD)) (42)

The CDGmatrix kernel contains all stationary modes by definition, including the hydrostatic mode,
possible spurious surface elevation and CD-modes. It also contains other modes that are solution
of the discrete geostrophic balance, i.e. the balance between the Coriolis and the pressure gradient
operators. The number of such modes is given by

�≡dim(ker(CDG))−dim(ker(G))−dim(ker(CD)) (43)

and it is mentioned in the last line of Table III for all pairs. For the first three pairs in Table III
we obtain �=(n−1)2 which corresponds to the number of mesh vertices that do not lie on the
boundary. For the last two pairs we have �=2n2−2 and (n+1)2−4, respectively. For the first
three pairs, each vertex can be associated with a smallest representable vortex (SRV) defined in
[22] as the stationary solution of (39) with minimal support. As in [22], the SRV forms a basis
for the discrete geostrophic balance. A typical SRV is presented in Figure 12 for the RT0–P1,
BDM1–P0, and BDM1–P1 pairs on Meshes 2 and 3, where Mesh 3 is an unstructured mesh with
smoothing. We see that the SRV structure is larger for these three pairs than for the PNC

1 –P1 and
RT0–P0 pairs examined in [22] on both meshes. Note that SRV with more complex structures also
exist near the boundary for the BDM1–P0 and BDM1–P1 pairs.

5.2. Propagating eddy simulation

In this experiment our purpose is to validate the results obtained in Table III. The slowly prop-
agating Rossby modes are simulated in the case of the evolution of a typical anticyclonic eddy
at midlatitudes. The domain is a 2000km×1200km rectangular basin and the triangulation has a
resolution of 20 km. The �-plane approximation, f = f0+�y, is used where f0=6.1634×10−5 s−1

and �=2.0746×10−11m−1 s−1, and the choice g=9.81ms−2 and H =1.6309m results in a phase
speed for gravity waves of

√
gH =4ms−1. The radius of deformation at midbasin is

√
gH/ f0=

65km. A Gaussian distribution centered in the domain is prescribed at initial time for the elevation
and the initial velocity is in geostrophic balance

u=−2
g

f

A

r2
exp

(
−|x|2

r2

)
k×x (44)
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Figure 12. x-Component of the velocity for a typical RT0–P1, BDM1–P0, and
BDM1–P1 smallest representable vortex.

�= Aexp

(
−|x|2

r2

)
(45)

where r =1.3×105m and A=0.95m. The Crank–Nicolson scheme is again used and the time step
is set to 1800s. The vortex moves slowly westward as predicted by the Rossby wave dynamics.
Figures 13 and 14 show the surface elevation and flow speed field after 5 weeks of simulation
on Mesh 2 and the unstructured Mesh 3, respectively. Note that the solutions have been linearly
interpolated to represent continuous isolines.

On Mesh 2, the solution is very smooth for both the elevation and the flow speed field. The
solutions are nearly identical for the five FE pairs and minor differences are barely observed. On
Mesh 3, the surface elevation and flow speed field are very similar to those obtained on Mesh 2 in
Figure 13 for the PNC

1 –P1, RT0–P0, and RT0–P1 pairs. However, for the BDM1–P0 and BDM1–P1
pairs the situation is very different. Indeed, the flow speed field exhibits severe oscillations that
lead to unstable results. The observed oscillations appear early in the simulation after only few
time steps and gradually grow in time. Although the oscillations in the flow speed field rapidly
increase, the surface elevation remains coherent with the presence of mild oscillations. We suspect
that the presence of CD-modes in Table III might be responsible for the oscillations observed in
Figure 14 for the BDM1–P0 and BDM1–P1 pairs. In that case the CD-modes, although present,
are not triggered by the use of an unstructured mesh for the RT0–P1 pair.
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Figure 13. Surface elevation and flow speed field after 5 weeks of simulation on Mesh 2.
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Figure 14. As for Figure 13 but on Mesh 3.
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6. CONCLUSION

An analysis of the Raviart–Thomas and Brezzi–Douglas–Marini FE pairs is presented to determine
the ability of these pairs in solving the SW equations. An inertia–gravity wave dispersion analysis is
performed on meshes made up of equilateral and right biased triangles. Spurious surface elevation
modes are observed for the RT0–P1 and BDM1–P1 pairs. The analysis also permits to show that the
RT0–P0 and PNC

1 –P1 pairs have the lowest amount of dispersion on both meshes compared with the
RT0–P1, BDM1–P0, and BDM1–P1 ones. We note that solutions on equilateral meshes present less
dispersion than on meshes made up of right biased triangles. The simulation results of a gravity wave
propagating in a canal are in good agreement with the analytical computations. The geostrophic
equilibrium is investigated through a linear algebra kernel computation approach. Such an analysis
shows the presence of spurious CD-modes in the velocity space for the RT0–P1, BDM1–P0,
and BDM1–P1 pairs. SRV structures have been computed for all pairs and compared with the
RT0–P0 and PNC

1 –P1 ones on both structured and unstructured meshes. Numerical solutions of
a propagating eddy at midlatitudes give smooth elevation and flow speed field on the uniform
mesh for all pairs. These results still hold for the PNC

1 –P1, RT0–P0, and RT0–P1 pairs on the
unstructured triangulation while unstable results are obtained for the BDM1–P0 and BDM1–P1
pairs in the representation of the flow speed field only. We suspect the CD-modes to be responsible
for this behavior.
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